John Everett Dolbow

Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science

Professor John E. Dolbow came to Duke University from Northwestern University, where he received an MS and PhD in Theoretical and Applied Mechanics. During the course of his graduate study, John was a Computational Science Graduate Fellow for the Department of Energy, and he spent a summer working at Los Alamos National Laboratory. Dr. Dolbow's research concerns the development of computational methods for nonlinear problems in solid mechanics. In particular, he is interested in the use of modern computational methods to model quasi-static and dynamic fracture of structural components and the evolution of interfaces. A native of New Hampshire, Dr. Dolbow received his Bachelor's Degree in mechanical engineering from the University of New Hampshire.  In 2020, he became an Assistant Vice President for Research for Duke University.  

Appointments and Affiliations

  • Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science
  • Professor in the Department of Civil and Environmental Engineering
  • Professor of Mathematics
  • Bass Fellow

Contact Information

  • Office Location: 319 Gross Hall, Box 90287, Durham, NC 27708
  • Office Phone: (919) 660-5202
  • Email Address: john.dolbow@duke.edu
  • Websites:

Education

  • B.S.M.E. University of New Hampshire, 1995
  • M.S. Northwestern University, 1998
  • Ph.D. Northwestern University, 1999

Research Interests

Modeling quasi-static and dynamic fracture of structural components, the evolution of interfaces with nonlinear constitutive laws, and developing models for stimulus-responsive hydrogels

Awards, Honors, and Distinctions

  • R. H. Gallagher Young Investigator Award. U.S. Association for Computational Mechanics. 2005
  • Robert J. Melosh Medal, Best Student Paper in Finite Element Analysis. Duke University. 1999
  • Computational Science Graduate Fellow. U.S. Department of Energy. 1997
  • Walter P. Murphy Graduate Fellowship. Northwestern University. 1995
  • Presidential Scholar. University of New Hampshire. 1991

Courses Taught

  • CEE 520: Continuum Mechanics
  • CEE 622: Fracture Mechanics
  • MENG 550: Master of Engineering Internship/Project
  • MENG 551: Master of Engineering Internship/Project Assessment
  • MENG 552: Master of Engineering Supplemental Internship

In the News

Representative Publications

  • Liu, Y., P. Zhong, O. Lopez-Pamies, and J. E. Dolbow. “A model-based simulation framework for coupled acoustics, elastodynamics, and damage with application to nano-pulse lithotripsy.” International Journal of Solids and Structures 289 (March 1, 2024). https://doi.org/10.1016/j.ijsolstr.2023.112626.
  • Zhang, H., J. E. Dolbow, and J. Guilleminot. “Representing model uncertainties in brittle fracture simulations.” Computer Methods in Applied Mechanics and Engineering 418 (January 5, 2024). https://doi.org/10.1016/j.cma.2023.116575.
  • Kumar, A., Y. Liu, J. E. Dolbow, and O. Lopez-Pamies. “The strength of the Brazilian fracture test.” Journal of the Mechanics and Physics of Solids 182 (January 1, 2024). https://doi.org/10.1016/j.jmps.2023.105473.
  • Guével, A., Y. Meng, C. Peco, R. Juanes, and J. E. Dolbow. “A Darcy–Cahn–Hilliard model of multiphase fluid-driven fracture.” Journal of the Mechanics and Physics of Solids 181 (December 1, 2023). https://doi.org/10.1016/j.jmps.2023.105427.
  • Xiang, Gaoming, Junqin Chen, Derek Ho, Georgy Sankin, Xuning Zhao, Yangyuanchen Liu, Kevin Wang, John Dolbow, Junjie Yao, and Pei Zhong. “Shock waves generated by toroidal bubble collapse are imperative for kidney stone dusting during Holmium:YAG laser lithotripsy.” Ultrasonics Sonochemistry 101 (December 2023): 106649. https://doi.org/10.1016/j.ultsonch.2023.106649.